MCOQ: Mutation Proving for
Analysis of Verification Projects

Karl Palmskog
https://proofengineering.org

Joint work with Ahmet Celik, Marinela Parovic,
Emilio Jests Gallego Arias, and Milos Gligoric

TEXAS AF psix %

MINES i=|
AT AUSTIN |m\\TeCh* s

Proof Assistants and Large-Scale Software Systems

Project Domain Assistant LOC
CompCert compiler Coq 120k+
selL4 kernel Isabelle/HOL 200k+

BilbyFS file system Isabelle/HOL 14k+
Verdi Raft k/v store Coq 50k+

Successes of Verified Software

“[T]he under-development version of CompCert is the
only compiler we have tested for which Csmith cannot
find wrong-code errors. This is not for lack of trying: we

have devoted about six CPU-years to the task.”
Yang et al., PLDI '11

“[No] bugs were found in the distributed protocols of
verified systems, despite that we specifically searched for
protocol bugs and spent more than eight months in this

process.”
Fonseca et al., EuroSys '17

Problem: Incomplete and Missing Specifications

“This [miscompilation]| bug and five others like it were in
CompCert’s unverified front-end code. Partly in response
to these bug reports, the main CompCert developer
expanded the verified portion of CompCert.”

Yang et al., PLDI '11

“[W]e have found 16 bugs in the verified systems that
have a negative impact on the server correctness or on
the verification guarantees. [...] analyzing their causes
reveals a wide range of mismatched assumptions [...].”

Fonseca et al., EuroSys '17

& mit-plv / chapar © watch~ 13

<> Code @ Issues 3 i) Pull requests 0 1" Projects 0 Wiki 4~ Pulse \l1 Graphs

Message duplication and reordering causes violation of
causal consistency #3
pfons opened this issue on 21 Apr 2016 - 1 comment

n
"

pfons commented on 21 Apr 2016 ®

The algorithm 2 produces results that violate causal i when ar i and reordered
by the network. This situation can occur in practice because the UDP protocol, which is used for the server-
sserver communication, does not guarantee in-order delivery nor does it guarantee at-most once delivery.

The following steps are sufficient to reproduce the bug, with Client A, Client B and Client C running on different
servers:

Req 1: Client A: PUT key, “NA”

Req 2: Client A: PUT key, “Request”

Req 3: Client B: GET key -> “Request”
Req 4: Client B: PUT key-effect, “Reply”

<replay packets sent by Req 1>
Req 5: Client C: GET key-effect -> “Reply”

Req 6: Client C: GET key -> “NA”

The steps above show that client C can see the effect event (‘Reply”), produced by Client B, without seeing the
cause event (“Request”), produced by Client A.

5/33

Response by Autho

L= MohsenLesani commented on 4 Jul 2016

The semantics in the paper models reordering of messages but not message duplication. Duplication can be
modularly handled by transformers presented in Verdi paper.
http:/verdi.uwplse.org/verdi.pdf

Mutation Testing

make small changes resembling faults to software system
execute accompanying test suite on changed system
measure how well the test suite catches introduced faults

improve test suite and repeat

Examples: Major mutation framework, PIT mutation testing

Our Working Analogy: Proofs ~ Tests

m tests are “partial functional specifications” of programs

m proofs represent many, usually an infinite number of, tests

Fixpoint app {A} (1 m:list A) Lemma asoc: VA (1 mn:list A), 1.t test_app_assoc ctxt =

:= match 1 with app 1(app m n) = app(app 1 m) n. assert_equal
'O = lf’roof..) (app [1] (app [2] [31))
la::1” =a::appl’m induction 1; intros; auto. (app (app [1] [2]) [3D)
end. simpl; rewrite IH1; auto.
Qed.
1. Coq function 2. Coq lemma 3. OCaml test

Our Contributions

propose mutation proving for deductive program verification
implement mutation proving in Coq tool, mCoq

evaluate mCoq on 12 large and medium scale Coq projects

Mutation Proving

m a mutation operator op is applied to a Coq project

m op may generate a mutant where specifications are different
m an op mutant where a proof fails during checking is killed
[

a op mutant where all proofs are successfully checked is live

10/33

Mutation Operators

Category Name Description
GIB Reorder branches in if-else expression

G | GIC Reverse constructor order in inductive type

enera GME Replace exp in the 2nd match case with 1st case exp

LRH Replace list with head singleton list
LRT Replace list with its tail

Lists LRE Replace list with empty list
LAR Reorder arguments to the list append operator
LAF Replace list append expression with first argument
LAS Replace list append expression with second argument
NPM Replace plus with minus

Numbers NZO Replace zero with one
NSZ Replace successor constructor with zero
NSA Replace successor constructor with its argument

Booleans BFT Replace false with true
BTF Replace true with false 11/33

Example Mutation Using GIB

Require Import Arith.

Definition update {A} (st : nat — A) h (v : A) :=
fun n = if Nat.eq_dec n h then v else st n.

Lemma update_nop : VA (st : nat = 4) y v,

st y = v —update st y vy = st y.

Proof.

intros; unfold update; case Nat.eq_dec; auto.
Qed.

Lemma update_diff : VA (st : nat —A) x v vy,
x #y —update st x vy = st y.

Proof.

intros; unfold update.

case Nat.eq_dec; congruence.

Qed.

12/33

Example, Mutated

Require Import Arith.

Definition update {A} (st : nat — A) h (v : A) :=
fun n = if Nat.eq_dec n h then st n else v.

Lemma update_nop : VA (st : nat = 4) y v,

st y = v —update st y vy = st y.

Proof.

intros; unfold update; case Nat.eq_dec; auto.
Qed.

Lemma update_diff : VA (st : nat —A) x v vy,
x #y —update st x vy = st y.

Proof.

intros; unfold update.

case Nat.eq_dec; congruence.

Qed.

Implementation Approach: S-expression Serialization

if Nat.eq_dec n h then st n else v

(CIf (CApp () (CRef (Qualid(Path((Id Nat)))(Id eq_dec)) ...))))
CIt 2
(J O @)
CApp CApp —% 5
@) O O O
. CREF™ ™) [CRet
CRef]\ [CRet]([Qualid] O
” O O n
!
ot 33
O 9 OO Qualid

QQ ONO)
] [ea-dec] [Pt 8 o

14/33

mCoq Components

sercomp

compser

Coq fork

SERAPI

QMutator

Runner

command-line SERAPI-based OCaml program which
takes Coq .v file and outputs lists of sexps

command-line SERAPI-based program which takes
lists of sexps and outputs .vo file or checks all sexps

fork of the v8.9 branch of Coq on GitHub to expose
key datatypes to SERAPI

extended OCaml library to support full
(de)serialization of Coq code, including tactics

sexp transformation library in Java that performs
operator mutations

driver program in Java and bash to orchestrate
components and compute mutation scores

15/33

mCoq Architecture and Workflow

sexp parser

QMutator @

IE

sercomp

compser

sexp f|le

16/33

Optimizations: mCoq Modes

Default

RDeps

Skip

Noleaves
ParFile
ParQuick
ParMutant
6-RDeps

simple mode which compiles every file in topological
dependency order.

advanced mode which checks only affected files and
caches and reverts .vo files.

advanced mode which checks only affected files, and
also avoids reverting .vo files

like Default, but avoids writing leaf files to disk.
Like Skip, but parallelizes checking of files.
Like Skip, but parallelizes checking of proofs.
Like RDeps, but checks each mutant in parallel.

Organizes operators into six groups, and runs each
group in parallel using RDeps.

17/33

Procedure

Require:
Require:
Require:
Require:
Require:
Require:

G — Dependency Graph

rG — Reverse Dependency Graph
op — Mutation operator

sVFs — Topologically sorted . v files
v — Set of visited .v files

vF — v file

1. procedure CHECKOPVFILE(G, rG, op, sVFs, v, vF)
2: sF < sercomp(VvF)

e e NT s

mc <« countMutationLocations(sF, op)
mi <0
while mi < mc do

mSF <+ mutate(sF, op, mi)
CHECKOPSEXPFILE(G, rG, sVFs, v, vF, mSF)
mi < mi+1

end while

10: revertFile(vF) 18/33

Evaluation Research Questions

RQ1

RQ2

RQ3
RQ4

What is the number of mutants of projects and what are their
mutation scores?

What is the cost of mutation proving in terms of execution
time and what are benefits of optimizations?

Why are some mutants (not) killed?

How does mutation proving compare to dependency analysis
for finding incomplete and missing specifications?

19/33

Evaluation: Open Source Git-Based Projects

Project #Files Spec. LOC Pr. LOC
ATBR 42 4123 5567
FCSL PCM 12 2939 2851
Flocq 29 5955 18044
Huffman 26 1878 4011
MathComp 89 37520 46040
PrettyParsing 14 1221 705
Bin. Rat. Numbers 37 5500 20541
Quicksort Compl. 36 2617 6202
Stalmarck 38 3552 7698
Cog-std++ 43 6882 6852
StructTact 19 2008 2333
TLC 49 13217 7802
Avg. 36.16 7284.33 11470.50

Total 434 87412 137646

20/33

https://github.com/coq-community/atbr
https://github.com/imdea-software/fcsl-pcm
https://gitlab.inria.fr/flocq/flocq
https://github.com/coq-community/huffman
https://github.com/math-comp/math-comp
https://github.com/wilcoxjay/PrettyParsing
https://github.com/coq-community/qarith-stern-brocot
https://github.com/coq-contribs/quicksort-complexity
https://github.com/coq-community/stalmarck
https://gitlab.mpi-sws.org/iris/stdpp
https://github.com/uwplse/StructTact
https://gitlab.inria.fr/charguer/tlc

Evaluation Environment

6-core Intel Core i7-8700 CPU @ 3.20GHz machine with 64GB of
RAM, running Ubuntu 18.04.1 LTS.

Limit the number of parallel processes to be at or below the
number of physical CPU cores.

21/33

RQ1: Number of Mutants

Project Total Killed
ATBR 355 335
FCSL PCM 115 112
Flocq 382 349
Huffman 369 366
MathComp 1037 1025
PrettyParsing 282 235
Bin. Rat. Numbers 365 352
Quicksort Compl. 681 637
Stalmarck 565 526
Cog-std++ 564 515
StructTact 104 100
TLC 400 306
Avg. 43491 404.83

Total 5219 4858

22/33

RQ1: Mutation Scores

Project Score
ATBR 95.44
FCSL PCM 99.11
Flocq 93.31
Huffman 99.18
MathComp 98.84
PrettyParsing 83.33
Bin. Rat. Numbers 97.23
Quicksort Compl. 93.81
Stalmarck 93.26
Cog-std++ 91.63
StructTact 96.15
TLC 76.88

Avg. 93.18

23/33

ation Cost

Project Checking Sercomp Default RDeps Skip Noleaves ParFile ParQuick ParMutant 6-RDeps
ATBR 45.39 131.33 2157.68 1760.27 1761.59 2155.00 1342.52 1523.21 596.21 755.40
FCSL PCM 11.75 21.95 153.22 150.88 151.12 153.47 152.02 150.79 53.33 109.51
Flocq 17.25 37.38 725.82 547.06 547.47 726.71 544.10 543.79 156.63 199.02
Huffman 7.5 11.58 188.64 185.70 186.19 188.13 181.66 207.94 62.46 72.38
MathComp 34133 593.19 9962.99 8480.79 848290 9967.52 6886.28 6763.25 4053.67 3943.05
PrettyParsing 4.37 557 27856 21698 21724 278.67 214.50 268.35 66.06 90.21
Bin. Rat. Numbers 26.29 1695 1022.61 92550 925.80 1022.19 894.52 889.60 26485 578.94
Quicksort Compl. 17.66 3433 1594.66 1064.64 1062.81 1596.87 914.65 928.41 362.38 553.53
Stalmarck 9.21 16.55 805.84 498.01 499.00 803.52 469.42 571.76 19278 230.62
Cog-std++ 30.94 57.01 3187.80 2597.54 2597.34 3186.81 2194.68 2403.13 776.77 1137.16
StructTact 3.40 7.27 55.90 41.62 40.98 55.93 39.72 40.20 18.84 19.35
TLC 21.82 4477 3128.85 1739.27 1738.99 3126.18 1467.15 1542.01 519.59 693.88
Avg. 44.76 81.49 193854 1517.35 1517.61 1938.41 1275.10 1319.37 593.63 698.58
Total 537.16 977.88 23262.57 18208.26 18211.43 23261.00 15301.22 15832.44 7123.57 8383.05

24/33

RQ3: Why are some mutants (not) killed?

We manually inspected 74 live mutants (out of 361), which we
labeled with one of:
m UnderspecifiedDef: The live mutant pinpoints a definition
which lacks lemmas for certain cases (33 mutants).
m DanglingDef: The live mutant pinpoints a definition that has
no associated lemma (30 mutants).

m SemanticallyEq: The live mutant is semantically equivalent to
the original project (11 mutants).

25/33

RQ3: MathComp Live LRT Mutant

Fixpoint merge_sort_push sl ss :=
match ss with

| [:] = ss"| [:] asss =sl:ss
| s2:: ss' =

[] : merge_sort_push (merge sl s2) ss’
end.

26 /33

RQ3: MathComp Live LRT Mutant, Mutated

Fixpoint merge_sort_push sl ss :=
match ss with

| [:] = ss"| [:] asss =sl:ss
| s2:: ss' =

merge_sort_push (merge s1 s2) ss'’
end.

27/33

RQ3: MathComp Live LRT Mutant, Commented

Fixpoint merge_sort_push sl ss :=
match ss with
| [:] = ss"| [:] asss" =sl:ss
| s2:: ss' =

merge_sort_push (merge sl s2) ss'’
end.

[T]he key but unstated invariant of ss is that its ith item
has size 2 if it is not empty, so that merge_sort_push
only performs perfectly balanced merges [...] without the
[::] placeholder the MathComp sort becomes two
element-wise insertion sort.
—Georges Gonthier

28/33

RQ3: Flocq Live GIB Mutant

Definition Bplus op_nanmx y :=

match x,y with

| B754_infinity sx, B754_infinity sy =
if Bool.egb sx sy then x
else build_nan (plus_nan x y)

29/33

RQ3: Flocq Live GIB Mutant, Mutated

Definition Bplus op_nanmx y :=

match x,y with

| B754_infinity sx, B754_infinity sy =
if Bool.egb sx sy then build_nan (plus_nan x y)
else x

30/33

RQ3: Flocq Live GIB Mutant, Commented

Definition Bplus op_nanm x y :=
match x,y with

| B754_infinity sx, B754_infinity sy =

if Bool.egb sx sy then build_nan (plus_nan x y)
else x

m Bplus lemmas rule out infinite cases through guards
m same problem with Bminus function

m more lemmas may be needed

31/33

RQ4: Comparison to dependency analysis

m compared to grep-based baseline (“do names occur in source
files?")

m compared to term dependency extraction (“do names occur in
elaborated terms?”)

m conclusion: baseline is useless, term dependency lists are noisy

See paper for details!

32/33

Conclusion

m technique for analyzing proof assistant projects
m Coq tool, mCoq, implementing technique and optimizations
m evaluation shows mCoq finds incomplete/missing specs

m paper accepted to ASE, link will appear on
https://proofengineering.org

Contact us:

Ahmet Celik, ahmetcelik@utexas.edu
Karl Palmskog, palmskog®@acm.org

]
]
m Marinela Parovic, marinelaparovic@gmail.com
m Emilio Jésus Gallego Arias, e@x80.org

]

Milos Gligoric, gligoric@utexas.edu

33/33

https://proofengineering.org

MathComp Merge Sort

Fixpoint merge_sort_push sl ss :=
match ss with

| [:] = ss"| [:] asss" =sl:ss
| s2:: ss' = [:] @ merge_sort_push (merge si1 s2) ss'
end.

Fixpoint merge_sort_pop sl ss (=
if ss is s2 ;1 ss’ then merge_sort_pop (merge sl s2) ss’ else sl.

Fixpoint merge_sort_rec ss s (=
if s is [1 x1, x2 & '] then
let s1:=if leT x1 x2 then [:: x1; x2] else [:1 x2; x1] in
merge_sort_rec (merge_sort_push sl ss) s’
else merge_sort_pop s Ss.

Definition sort := merge_sort_rec [:].

34/33

